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SUMMARY 
We consider the use of accelerated gradient-type iterative methods for solution of Newtonian and certain 
non-Newtonian (power-law and Bingham models) viscous flow problems. The formulations are based on 
penalty and mixed finite element methods, and such factors as the effect of the penalty parameter, asymmetry, 
continuation and preconditioning are examined. 
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INTRODUCTION 

Both primitive variable (mixed) and penalty finite element methods have been extensively applied 
to Navier-Stokes problems. In this study we consider the application of these methods to 
generalized Newtonian fluids (such as power-law fluids) and the use of iterative techniques for the 
solution of the associated Jacobian systems for Newton iteration. Most finite element codes 
employ sparse elimination solvers for system solution, and there are several open issues related to 
the use of iterative methods; such as, how efficient are modern iterative methods for Navier-Stokes 
problems and for generalized Newtonian fluids? What complications arise for mixed or penalty 
methods, and how is the convergence influenced by choice of penalty parameter? For 
Navier-Stokes problems the inertial term u - Vu for velocity u introduces a non-symmetric 
contribution in the discrete problem. This in turn will influence the choice of iterative method and 
performance of the method. In addition, this non-linear term will become more significant as the 
flow velocity increases (higher-Reynolds-number flows). Convergence of the outer Newton non- 
linear iteration is sensitive to the choice of starting solution iterate-the initial iterate should lie in 
a ‘ball of attraction’ of the solution to the non-linear problem. Parameter and arc-length 
continuation techniques may determine a sequence of solutions on a continuation path, thereby 
providing improved starting iterates and better iterative performance. In the present study we 
conduct several exploratory investigations and numerical experiments concerning these issues. 

PENALTY METHOD 

We begin with the simpler case of linear Stokes flow and the penalty method. Stationary Stokes 
flow of an incompressible viscous fluid is governed by 

- vAu + V p  = f in 0, (1) 

V . u = O  i n R ,  (2) 
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where u is velocity, p is pressure, f is the body force, v is the kinematic viscosity, and fluid density 
has been normalized as unity. 

We consider essential boundary conditions 

u = g  on dR. (3) 

The penalized variational formulation of the Stokes problem may be obtained by introducing the 
perturbed Lagrangian 

L(u,p) = jn ( i V u : V u  - p V - u  - - p 2  E - f - u  
2 (4) 

where c is a small parameter (0 < c << 1) and Vu: Vu denotes the dyadic product. At the stationary 
point (u,p) of L in (4) we have, on taking variations with respect to u and p and setting SL = 0 for 
arbitrary admissible v = Su, q = 6 p ,  respectively, 

IQ (vVU:VV - p V - v  - f . v ) d x  = 0, 

jn ( - c p  - V * u ) q d x  = 0. 

From (6), p = -- ( I/E)V*U and substituting in ( 5 )  we obtain the penalty form: find U,E V with u, = g 
on c?R such that 

1 Ii2( vVu,:Vv + --(V.u,)(V-v) 
E 

(7) 

for all V E  V with v = 0 on dR. For sufficiently regular data f, the solution u, converges to u as E -+ 0. 
The penalized statement (7) was the basis of several finite element studies from which it became 

apparent that the penalty term should be 'underintegrated' appropriately if the saddle-point 
properties required by existence/uniqueness theory are to go over to the discrete problem.' -6 This 
discrete LBB or inf-sup condition then implies the approximate problem statement: find uh E Vh 
such that 

holds for all VhE Vh, Vh = 0 on dR, where I[.] denotes reduced numerical integration. Here uh 

denotes the usual finite element representation for the velocity components, and previous studies 
have identified appropriate choices of reduced integration rules for the penalty term. For a more 
detailed discussion, see, for instance, the treatment in Carey and Oden'. and the references cited 
therein. 

Introducing the finite element expansion for components of u,, and test basis functions for 
components of vh in (8) ,  we obtain a linear algebraic system of the form 

1 
(9) V A U *  + -Bu* = f * ,  

E 

where u* is the vector of 2 N  nodal velocity unknowns and f *  the right-side vector; A is 2 N  x 2 N ,  
symmetric positive definite and B is 2 N  x 2 N ,  symmetric and positive but of reduced rank. Hence 
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the final system is 

cu* = f*, 

where C = vA + E -  B, with C symmetric positive definite (SPD). 

PENALTY RESULTS 

There are well established convergence results for SPD matrix systems.' However, numerical 
experiments performed in this study reveal that the conjugate gradient method and other iterative 
methods for solving (10) converge very slowly and in practice may fail. Closer examination of the 
intermediate calculations in the iterative algorithms reveals that the system (10) appears to be 
almost singular; that is, (10) is very ill conditioned. This result can be interpreted directly by noting 
that B is of reduced rank (singular) and E -  ' is large for 0 < E << 1. Thus E -  B dominates vA for 
computations in finite precision arithmetic. We found that diagonal (Jacobi) preconditioning and 
other standard preconditioning strategies, including even extensive use of incomplete factoriz- 
ation, all failed to resolve the problem. Some representative iterative performance studies are 
summarized in Table I for a generalized conjugate gradient method with various precondition- 
ings. The results are discouraging and demonstrate that standard iterative methods and 
preconditioning accelerators do not work with the penalized Stokes problem (9). 

The source of the difficulty is evidently the penalty parameter which implicitly enforces the 
incompressibility constraint (V-u -, 0 as E -, 0). We examined the sensitivity of iterative solution to 
choice of E and found that the methods performed poorly at 'reasonable' &-values. Dividing by v in 
(9), we get A + ( v E ) - '  B so that the relative size of the viscosity will, of course, have some bearing 
on the conditioning and these results, but this does not change the trend for practical flow 
calculations. Continuation solution with incremental adjustment of v and/or E did little to alleviate 
the problem. 

NON-LINEAR NON-SY MMETRIC PROBLEM 

The preceeding difficulty clearly persists for the non-linear Navier-Stokes problem 

- v A u + u . V u  + Vp = f in R, (1 1) 

V - u = O  i n n ,  (12) 

Table I. Performance of ORTHOMIN'' with various preconditioners; Stokes flow, 
5 x 5 mesh of biquadratic elements for driven cavity flow 

Preconditioner 
Number of CPU 
iterations time 

Line Jacobi Fails to 

Incomplete Cholesky Fails to 

Modified incomplete Cholesky 30 07062 
Blocked incomplete Cholesky (v.1) 120 06552 
Blocked incomplete Cholesky (v.2) 143 04587 
Modified blocked incomplete Cholesky (v.1) 114 07218 
Modified blocked incomplete Cholesky (v.2) 175 05850 

converge - 

converge - 
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which leads to the discrete penalty variational problem: find uh,e V k  such that 

for all vke V", vh = 0 on dQ.  This yields the non-linear system 

(14) 
1 

V A U *  + -Bu* + g(u*) = f* 
& 

and Newton iteration: given uo, for n = 0, 1, 2, . . . solve 

where 

and 

F,= (vA + E - '  B)u, + g(u,) - f*. (17) 

The matrix contribution (dg/du) at u, is non-symmetric. Moreover, as noted in the Introduction, 
the iteration (15) fails to converge if initial iterate uo is not sufficiently close to the solution u*. 

To circumvent the latter problem, continuation techniques may be introduced to generate a 
sequence of solutions on a continuation path to u*. Parameter v enters naturally in the 
formulation, and v -  ' is proportional to the Reynolds number. The simplest continuation 
technique is then an incremental continuation in v - ' .  Beginning with Stokes flow (the linear 
problem considered earlier), we solve for uo and then use this as a starting iterate to solve for u1 at a 
small increment in Reynolds number, and so on. 

As noted previously, the penalized Stokes system is ill conditioned for E small and clearly this 
applies equally for the Jacobian systems in (15). Moreover, attempts to use both simple 
preconditioners and also incomplete factorization did not significantly improve the situation. 
Since this is attributable to the penalty term, which is present for all Jacobian systems ( 1 9 ,  we next 
examine the effect of 'full' factorization of the Stokes problem to precondition iterative solution of 
the subsequent Jacobian systems in the non-linear iteration. That is, we have the algorithm: 

( I )  Factor (10) to Cu* = L D L T u *  = f* .  
(2) Use the factored Stokes system to precondition (15): 

Q - '  J(u,+ 1 - u,) = Q - '  F* 

(with Q = C) and apply a generalized conjugate gradient scheme. 

This scheme should be very efficient for low-Reynolds-number flow since C - J in this case. Our 
first objective then is to ascertain the influence of full factorization of C on alleviating the ill 
conditioning due to the penalty in the non-linear problem. The second aspect to be considered is 
the treatment of the asymmetry arising from the term dg/au. As the Reynolds number increases, 
this asymmetry will become more pronounced. 

has been applied successfully to convection-dominated transport 
processes and similar non-symmetric problems. Several other accelerated iterative techniques 
have been developed more recently for treatment of non-symmetric problems. Some of the 
predominant methods are ORTHOMIN, ORTHORES, ORTHODIR and the generalized 
minimal residual methods.13 In this study we mainly use ORTHOMIN as our accelerated 

Biconjugate gradient' I .  
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iterative scheme with the Stokes preconditioning strategy specified above. ORTHOMIN provides 
a monotone decreasing residual; furthermore, if the symmetric part of the preconditioned matrix is 
positive definite-a condition routinely satisfied for sufficiently small Reynolds number--the 
method is guaranteed to converge. The truncated algorithm, ORTHOMIN(s) is given by 

n-1 

Here do) is given and pseudoresidual z@) = Q- (b- Ad")); the variable s 2 0 is a fixed integer 
specifying the number of previous direction vectors to be used. 

If the preconditioned system is sufficiently far from symmetric positive definiteness, the 
truncated ORTHOMIN scheme is not guaranteed to converge. The scheme may stagnate (i.e. no 
improvement in the solution as n increases). However, periodic 'restarting' as stagnation is 
detected usually enables the method to proceed onward to convergence. In this case the residual is 
monitored and when stagnation occurs the old direction vectors are rejected and the process 
reinitiated. We show some examples later. 

The GMRES methodi4 is another useful algorithm for non-symmetric problems. When run as a 
periodically restarted method, GMRES produces the same iterates as the restarted and non- 
truncated ORTHOMIN method (i.e. restarted ORTHOMIN (a)); however, restarted GMRES is 
less susceptible to breakdown and stagnation. As a truncated method, the GMRES method 
applied to a symmetric system is equivalent to the MINRES method,15 suitable for symmetric 
indefinite problems. 

NAVIER--STOKES RESULTS 

The unit-driven cavity problem was again employed for the numerical experiments. Plots of CPU 
time on the UT System CRAY X-MP/24 on meshes of 5 x 5, 7 x 7, 10 x 10 and 15 x 15 
biquadratic (nine-node) elements are given in Figures 1 4  and Table 11. Calculations were made 
with penalty parameter E = and Reynolds numbers up to 500. A truncated five-term 
ORTHOMIN was used in this study (unless otherwise specified). The tolerance for the outer 
Newton iteration and inner gradient iteration was on successive iterates (unless otherwise 
specified). The algorithm is compared here with frontal elimination solution for the same 
incremental continuation history. 

From the figures we see that at small Reynolds numbers the iterative method is very efficient as 
expected. At the higher range of Re considered, asymmetry becomes more pronounced, the 
preconditioner becomes less effective and the iterative performance deteriorates. Furthermore, on 
the finer grids the 'cross-over point' between the methods moves towards the higher Reynolds 
numbers. The slight dip in the graph near Re = 350 is due to variation in the number of Newton 
iterations for convergence. Values are given in Table 111 for the CPU time as we reduced the 
number of ORTHOMIN iterations per Newton step for the 10 x 10 and 15 x 15 meshes at Re 
= 400. Even though the ORTHOMIN iteration is not convergent to the full tolerance at each 
Newton step, the final solution at  the desired Reynolds number is fully converged to the specified 
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Figure 4. Comparison of CPU time for 15 x 15 mesh 
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Table 11. CPU time for ORTHOMIN and frontal solver 
- 

CPU time CPU time 
Mesh size Re frontal solver ORTHOMIN Newton iterations/ORTHOMIN iterations? 

~~ ~ 

5 x 5  0 
10 

100 
200 
300 
400 
500 

7 x 7  0 
10 

100 
200 
300 
400 
500 

10 x 10 0 
10 

100 
200 
300 
400 
500 

15 x 15 0 
10 

100 
200 
300 
400 
500 

003530 
01250 
02147 
02596 
02596 
03044 
03493 

01068 
03004 
0494 1 
05909 
06877 
06877 
0.88 13 

03077 
07804 
1.2531 
1.4895 
1.4895 
1.7259 
1.9622 

1.2530 
2.7200 
4.1870 
49206 
4.9206 
5.654 1 
6.3876 

003530 
005643 
0 1366 
0.2663 
0402 1 
07560 
1.0174 

01068 
01486 
03097 
0.5838 
0.985 1 
1.4926 
2.2597 

03077 
03903 
07241 
1.3204 
1.7993 
2.8420 
3.7920 

1.2530 
1.4804 
2.3630 
3.9779 
52425 
7.7505 

11.2390 

1/1 
3/9 (1,4,4) 
5/48(1, 12, 11, 12, 12) 
6,415 (1,21,21,24,23,25) 
6/185 (1,32,37,36,39,40) 
7/367 (1,44,96*, 47,61,57,61) 
8/450 (1,55,97*, 64,70,70, 72,71) 

1/1 
3/9 (1,4,4) 
5/50(1, 12, 12, 13) 
6/123 (1,22,21,26,26,27) 
7/232 (1,39,37,36, 37,40,42) 
7/367 (1,75*, 63, 59,56,46,57) 
9/571 (l,63*, 120*, 56*,67,58,74,64,68) 

1/1 
3/9 (1,4,4) 
5/51 (1, 13, 12, 12, 13) 
6/132 (1,25,22,27,28,29) 
6/199 (1,43,36,38,43, 38) 
7/337 (1,43*, 61, 51,62,54,55) 
8/467 (1,53*, 43*, 67,64,91*, 76,72) 

1/1 
3/9 (1,4,4) 
5/52(1, 13, 12, 12, 14) 
6/133 (1,25,22,27,28, 30) 
6/200(1,44,37,38,41,39) 
7/328 (1,58*, 53,49,57,56 54) 
8/506 (1,53*, 48*, 74,61*, 85, 104*, 80) 

t Numbers in parentheses indicate number of ORTHOMIN iterations for each Newton step. 
* Indicates ORTHOMIN iteration failed to converge to specified tolerance (residual stagnate without improvement) at 
indicated outer Newton step. 

Table Ill. CPU time for ORTHOMIN iteration; Re = 400 and varying iteration limit ITMAX 

Mesh size ITMAX CPU time Newton iterations/ORTHOMIN iterations 

10 x 10 100 2.8420 7/337 (1, 53, 61, 51, 62, 54, 55) 
7/301 (1, 50, 50, 50, 50, 50, 50) 
8/176 (1, 25, 25, 25, 25, 25, 25, 25) 
10/91 (1, 10, 10, 10, 10, 10, 10, 10, 10, 10) 

-~ 

50 2598 1 
25 1-6952 
10 1.1026 

15 x 15 100 7.7505 7/337 (1, 53, 61, 51, 62, 54, 55) 
50 7.2684 7/301 (1, 50, SO, 50, 50, 50, 50) 
25 4.9248 
10 3.3571 

8/176 (1, 25, 25, 25, 25, 25, 25, 25) 
10/91 (1, 10, 10, 10, 10, 10, 10, 10, 10, 10) 



NEWTONIAN AND GENERALIZED NEWTONIAN FLOWS 135 

tolerance. This approach of relaxing the ORTHOMIN iteration tolerance at intermediate 
Newton iterates reduces the CPU time by 50%. The midplane velocity profiles are given in 
Figure 5 and are indistinguishable from those obtained using full ORTHOMIN convergence as 
expected. For Re = 10oO continuation is necessary to obtain convergence of the Newton iteration. 
CPU times are given in Table IV for calculations with Reynolds number increment 200. 

The deterioration of the preconditioner at  higher Reynolds numbers is mainly due to the 
increasing asymmetry of the problem, since the penalty is accommodated through the Stokes 
preconditioner. To improve conditioning, a complete refactorization was made at each new 
Reynolds number with the (ORTHOMIN) iterative solution in the subsequent Newton solution 
steps. This approach improves the rate of convergence at  high Re and compares favourably with 
the full elimination solution and no inner iteration. The midplane velocity profiles for Re = loo0 
are compared in Figure 6. Figures 7-10 indicate CPU time versus Re for each of the meshes in the 
cases Re = 300 and 500 in the continuation scheme. Comparing the CPU times with those 
presented in earlier figures, it is clear that continuation enhances the iterative performance. 

To assess the effect of penalty parameter at higher Re (since v has changed), we made 
calculations with continuation in E from E = 100 (where penalty and viscous terms are of the same 
order) to E = Results for this calculation are shown in Table V. Clearly this does not improve 
the behaviour. Augmented Lagrangian methods16 also appeared to give little improvement. 

Rat her than employ ORTHOMIN, BCG or similar non-symmetric iterative solvers, we 
considered the possibility of symmetrizing the non-linear iteration schzme in a modified variant of 
successive approximation. Recall that in successive approximation the non-linear term is typically 
linearized as U,*VU,+~, where u, is the known solution a t  the previous iterate. This convection 
term then yields a non-symmetric contribution. Alternatively, one can write for each component 
of u - V u  with u = (u, u )  

respectively. However, this symmetric formulation yields solutions in a reasonable number of 
iterations only for Reynolds numbers up to 60. Even with continuation, the rate of convergence 
was too slow for this formulation to be seriously considered. 

MIXED METHOD 

Next we considered the use of iterative methods in conjunction with a mixed formulation. The 
variational statement of the Navier-Stokes problem is: find u E V ,  p E P such that 

jQ(vVu:Vv + U V u - v  + pV.v)dx = fevdx, j* 
In q V - u  dx = 0 

(20) 

(21) 

for all admissible test functions (v, q). Introducing the finite element model (Co biquadratic 
velocities and Co bilinear pressures), we obtain the sparse non-linear system 

VAU + g(U) - B'p = f* ,  (22) 

Bu= 0. (23) 
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Table IV. CPU time for Re = lo00 with incremental continuation in Re 

Mesh 
size 

CPU timeliteration count CPU timeliteration count 
ORTHOMIN frontal solver 

5 x 5  
7 x 7  

10 x 10 
15 x 15 

0.65481115, 50, 23, 18, 16 
1.48511123, 55, 23, 17, 16 
3.54221132, 53, 24, 18, 16 

11.48061133, 47, 24, 18, 16 

1.022616, 5, 4, 4, 4 
2.237016, 5, 4, 4, 4 
5-5078/4, 5, 4, 4, 4 

17.390416, 5, 4, 4, 4 

For stokes flow g(u) = O  and, if we write (23) as -Bu = 0, we obtain a sparse symmetric linear 
block system for (u, p), However, the system is not positive definite. In particular there is a zero 
diagonal block in (23). Hence the previous problem associated with the penalty formulation is not 
present, but the zero diagonal entries in (23) prevent conjugate gradient (CG) solution with 
Jacobi (diagonal) preconditioning. If we perturb the zero block by a small non-zero diagonal of 
order lo-'', CG still fails. For systems that are not SPD, the generalized conjugate gradient 
methods such as ORTHOMIN are appropriate. A driven cavity Stokes flow was computed using 
truncated ORTHOMIN, ORTHORES and GMRES accelerators with Jacobi precondition- 
ing. Performance results are presented in Table VI for the various methods with tolerances lop6 
and lo-* on the inner iteration. There is no apparent difference between the velocity profile 
obtained by using either tolerance on the inner iteration, and results agree closely with the 
elimination solution. 

In Figures 11-13 we plot the residual norm (an error measure for the iteration) against the 
number of iterations. The residual norm decreases monotonically for ORTHOMIN and GMRES 
but oscillates for ORTHORES. We also considered the non-symmetric form (20) directly. Again 
we used the non-symmetric accelerator with Jacobi preconditioning to solve the driven cavity 
Stokes flow. Performance results are presented in Table VII. ORTHOMIN yielded convergent 
solutions in some cases. In most cases the error norm was observed to 'level off' and failed to 
converge. Plots of residual norm against number of iterations for the five-term truncated formula 
are shown in Figures 14-16. Restarting the algorithm when this occurs appears to improve the 
behaviour as seen in Figure 17. In other research on non-symmetric problems, restarting has also 
been shown to be effective. Performance results for the driven cavity problem are presented in 
Table VIII. The iterative methods perform less well than the elimination solution in all cases, even 
for low-Reynolds-number flow. This was due mainly to the use of a non-symmetric diagonal 
storage method which is less suitable when the very sparse matrix B for the pressure unknowns 
must be accommodated. 

NON-NEWTONIAN FLOWS 

Part of the present research is directed towards the use of iterative solvers for 'generalized 
Newtonian fluids, e.g. non-Newtonian flows of power-law type or Bingham plastic flow. The 
viscous stress for this type of fluid is given by zij = 2q(l,)Dij, where D, is the rate of deformation 
tensor, I ,  = ftr(D2) is the second invariant of D, and q is the apparent viscosity. A variety of 
models have been proposed and correlated with experimental data. l 7  In this study we consider 
power-law fluids so that q has the form q = KZ',"- l)'z, where K is the consistency factor and n is the 
power-law index. One of the significant features of power-law fluids is the shear-thinning effect 
when n < 1. This effect can best be illustrated by an example. The fully developed velocity profile 
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Table V. CPU time for Re = 400; continuation on penalty parameter 
from initial E to E = 

Mesh Initial 
size f: CPU time/iteration count 

5 x 5  100 

7 x 7  100 

10 x 10 100 

15 x 15 100 

1 

1 

1 

1 

1.4957/218, 417, 18, 3, 1 
07158/264, 18, 3. 1 
3,07851289, 323, 12, 3, 1 
1.6713/306, 12, 3, 1 
7.0542/321/378, 18, 3, 1 
36452/289, 18, 3, 1 

21.0770/318, 401, 18, 3, 1 
14.8543/455, 18, 3, 1 

Table VI. Driven cavity Stokes flow (mixed formulation); 
5 x 5 mesh 

Number of 
Method Tolerance iterations CPU time 

ORTHOMIN 10-6 115 03237 
10-8 190 0.5305 

ORTHORES 10-6 102 0.2876 
10-8 154 04352 

GMRES 10-6 99 0.2922 
10-8 154 04536 

- 
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for channel flow of a power-law fluid at n = 0.8, 0.5, 0.3 and 0 2  is shown in Figure 18. The fully 
developed profile becomes flat in the central zone as n decreases and the shearing near the wall 
becomes more pronounced. The apparent viscosity across a section of the channel is shown in 
Figure 19 for the same fluid cases. At n = 0.2 the viscosity is small near the wall where the shear 
stress is large, and the viscosity is large near the centre of the channel where the shear stress is 
small. Hence there is a large viscosity gradient across the channel, and this behaviour for small n 
influences the behaviour of the non-linear solution iteration. As the power-law index n decreases 
from 1 towards 0, the non-Newtonian flow becomes increasingly difficult to model. For non- 
Newtonian flows such as Bingham fluids and power-law fluids with small power-law index, 
Newton’s method fails; for example, Gartling’ indicates the failure of Newton’s method for cavity 
flow problems with n 5 0.25. Numerical experiments indicate that even incremental continuation 
in n using the solution at n = 0.4 as a starting iterate for flow at n = 0.3, and so on, appears to be of 
little help, since the Newton correction step is too large owing to the extreme change associated 
with shear thinning. By introducing a line-search procedure for under-relaxation of the Newton 
correction, the method can be improved and a solution obtained. Here we introduce a one- 
dimensional line search based on a residual minimization process to under-relax the Newton 
iteration. 

Let u, be the current solution iterate and 6u the correction vector obtained from solution of the 
Newton Jacobian system. Then the relaxation iterate is 

U,+ l  = u, + osu, ,  
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Table VII. Driven cavity stokes flow; nonsymmetric mixed form, 
Jacobi preconditioning, 5 x 5 mesh 

Number of Number of 
Accelerator terms iterations CPU time 

ORTHOMIN 2 
3 
4 
5 
7 
8 
9 

10 
ORTHORES 2 

5 
6 
7 

GMRES 2 
4 
5 
6 
I 

CG 

> 400 
320 

> 400 
364 
294 

> 400 
> 400 
> 400 
> 400 
> 400 
> 400 

400 
> 400 
> 400 
> 400 
> 400 
> 400 

Diverges 

NA 
0.8962 

NA 
1.0471 
0.8844 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
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Table VIII. Driven cavity flow (mixed formulation); 5 x 5 mesh 
-~ 

CPU time 
frontal CPU time 

Re solver ORTHOMIN Newton iterations/ORTHOMIN iterations 

10 0, I890 02500 3/9(1,4,4) 
100 0.3151 0.5 147 5/60(1, 15, 15, 15, 14) 
200 0.3781 0.9705 6/150(1, 28, 30, 31, 31, 29) 
300 0.441 1 1,6457 7/286( 1, 46, 49, 50, 48, 51, 41) 
400 0.5042 3.1 107 8/582 (1, 63, 80, 112, 96, 68, 83, 79) 

t:. 000E-01 

+0. 000E-01 

+6.000€-01 .. 
+4.000E-01 

+2.000€-01 

+o. 000E+00 

U V E L O C I T Y  P R O F I L E  
I I I I 

I I I I 

U 
+2.000E-01+4.000E-0146. GOOE-01+8.  OOOE-Ol+l .  3L- 

Figure 18. Velocity profile across the channel 

where o is the relaxation factor. The value of w is computed by line search to minimize a parabolic 
fit to the L z  norm of the residual r ( o )  evaluated at w = 0.0, 0 5  and 1-0. Let R denote Ilr 11; 
minimizing R,  we find w = - t [ 4 R ( O S )  - 3R(O) - R ( l ) ] / D  if D = R ( l )  + R ( 0 )  - 2R(O*5) > T > 0 
(T - If R(0) > R(0.5)  > R(1.0) (monotone decreasing), we take w = 1. If 
R ( 0 )  < R(0.5)  < R ( l )  (monotone increasing), we take w = 0.25 and check if R ( w )  is less than R(0);  
if R ( w )  is still greater than R(O), we bisect o and repeat this process until the residual norm is 
decreased or w is reduced to 0.03125. This limit is specified to avoid stagnation of the iteration 
with w = 0.0. 

To analyse the effect of shear thinning on the Newton iteration, let us examine in more detail the 
form of the Jacobian matrix. Considering the viscous term alone, the contribution to the finite 
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Figure 19. Viscosity profile across the channel 

element system is 

F(u)= %qT:Vwdx 

and in the Jacobian system we have accordingly 

Clearly the structure of the Jacobian will be strongly influenced by the behaviour of q and aq/au, 
in the flow domain. Recalling Figure 19, we see that q is small in the shear-thinning layer and 
varies by two orders of magnitude across the channel. For this case it is straightforward to verify 
that aq/au, behaves similarly. It follows that the entries in tij will be small in the layer relative to 
the centre of the flow zone. If the nodes are ordered naturally (left to right and bottom to top), then 
entries of matrix J will range from large values in the upper left comer to small values in the lower 
right corner. This implies, in turn, that the conditioning of J will deteriorate as n decreases. The 
following mathematical analysis demonstrates that qualitatively the behaviour of the Newton 
iteration deteriorates as the conditioning worsens. 

Following Ortega and Rheinboldt,' the fixed-point condition for convergence of Newton 
iteration implies that the spectral radius satisfies 

where u is the solution to the system and u, is the current iterate. Let En = J(u,) - J(u) so that 

J(u,) = J(u) + En = J(u) (r + J- ' (u)E,). 
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For En small we then have 

J - ~ ( U , , ) ~ ( I -  J- ' (U)E,)J-~(U) 

so that the spectral condition reduces to 

p(J-'(u)E,)< 1. 

Next let 11 En / /  = e 11 J(u) )I with e of bounded size (e represents the 'relative error') so that 

p(J-'(u)EJz e cond (J(u)), 

where cond (J) is the condition number of J. Using this approximation in the spectral inequality, 
we have the qualitative result for convergence 

cond (J(u)) < l /e .  

From numerical calculations of channel flow, the condition number of the Jacobian increases by 
two orders of magnitude as n changes from 0.8 to 0.2. Hence, as the condition number increases 
with shear thinning, the convergence deteriorates. 

Solutions for cavity flow with a 5 x 5 mesh and the penalty method were first computed, and the 
performances of a frontal elimination solver and of ORTHOMIN for this problem are given in 
Table IX. Again the factored Stokes flow problem was used for preconditioning. The iterative 
methods are competitive over the range of n considered even for this coarse mesh size. As n + 0, the 
non-linearity is strong so the preconditioning deteriorates and the iterative method performs less 
well. 

The problem was also computed using the mixed formulation and ORTHOMIN to yield the 
iteration results in Table X. In this instance the iterative performance was inferior and failed for 
n < 03. 

CONCLUSIONS 

Accelerated gradient-type iterative methods such as the Lanczos method, ORTHOMIN, 
ORTHORES and the generalized minimum residual methods have been the subject of consider- 
able research and practical interest to numerical analysts. Here we apply these techniques to the 
Jacobian systems for non-linear Navier-Stokes problems and power-law generalized Newtonian 
flows. Both mixed and penalty formulations are considered and the influence of continuation in 
Reynolds number Re and power-law index are explored. 

Table IX. CPU time of power-law cavity flow; 5 x 5 mesh 

Power- 
law 

index 

CPU time 
frontal 
solver 

0.8 
0.5 
0.3 
0 2  
0.1 

0.1750 
0.2625 
0.3531 
0.6703 
0-9078 

CPU time 
ORTHOMIN Newton iterations/ORTHOMIN iterations 

006648 4/16 (1, 5 ,5 ,5)  
0.1472 
0.2955 
09116 
2.2461 

6/50(1,8, 11 ,  10, 10, 10) 
8/126(1, 11, 19, 15, 16, 19,22,23) 
13/428 (1, 15, 17, 19,23,25,27,47,71,53,48,47) 
20/802 (1, 19,27, 24,27,27, 52, 56,46,45, 50, 56,42,42,41, 
48, 60,48,48,42) 
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Table X. Power-law cavity flow (mixed formulation); 5 x 5 mesh 

Power- CPU time 
law frontal CPU time 

index solver ORTHOMIN Newton iterations/ORTHOMIN iterations 

0 8  0.251 1 02933 4/17 (1,5,6,5) 
0.5 03767 0.6137 6/79 (1,9,20,22, 13, 14) 
0 3  0.4395 2.2476 10/409 (1, 17,66,42,48,43,39,44, 51,58) 
0.2 0.6906 6/171 (1,20,37*, 39*, 37*, 37*) 
0.1 1.7578 Diverges 

* See footnote to Table 11. 

Numerical experiments for the penalized Navier-Stokes solution of the driven cavity problem 
compare the frontal solution and iterative performance with ORTHOMIN. Preconditioning is 
seen to be an important and sensitive issue and iterative performance for the linear problem is 
poor. To accommodate this in the penalized non-linear problem, we precondition using the 
factored Stokes (linear) operator. ORTHOMIN is then seen to be superior at low Re and, 
provided incremental continuation in Re is employed, for higher values of Re. To accelerate the 
scheme as Re increases, a new preconditioner is constructed by complete refactorization at each 
continuation step. Performances of ORTHOMIN, ORTHORES and GMRES are compared for 
a test problem and the effect of restarting is seen to be important. 

The iterative methods were also applied to power-law fluids exhibiting shear thinning. A line- 
search strategy allows computation of solutions at low power-law index. The effect of shear 
thinning on the Jacobian is analysed and related to the conditioning. This explains the 
deterioration in iterative performance as the power-law index is decreased. 
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